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Anisotropic thermally activated diffusion in percolation systems
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We present a study of static and frequency-dependent diffusion with anisotropic thermally activated transi-
tion rates in a two-dimensional bond percolation system. The approach accounts for temperature effects on
diffusion coefficients in disordered anisotropic systems. Static diffusion shows an Arrhenius behavior for low
temperatures with an activation energy given by the highest energy barrier of the system. From the frequency-
dependent diffusion coefficients, we calculate a characteristic frequeneyt/ft. , related to the timé, needed
to overcome a characteristic barrier. We find thatfollows an Arrhenius behavior with different activation
energies in each direction.
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The study of diffusion on disordered media is an impor- F(W1)=I05(W1—Wg)+(1— p)S(W,),
tant problem, in view of its relevance in a wide variety of
natural and industrial processls-3]. In the past years, the Q(w,) = p5(w2—w2)+(1—p)5(w2). 1)

anisotropic generalization of diffusion has attracted much at-

tention[4-9], justified by the diversity of systems in which |1 means that the transition rate
diffusion takes place. A few examples of anisotropic system !
are porous reservoir rockp3,8,10, epoxy-graphite disk
composites[11], and layered semiconducting compounds
[12].

takes the valuev® with
%ccupation probabilityp and zero otherwise, and analo-
gously for the 2 direction.

In order to account for the temperature dependence of

Static (long-time and frequency-dependent conductivity diffusion poefficients, we propose intrinsic trans'ition' rates
on isotropic disordered media has been extensively studief'aracterized by a thermally activated process with different
with both analytical and numerical methods. One of the mosgctivation energies in each direction. Therefore, we define an
widely used models for disordered media is the percolatioftnisotropic thermally activated procesa which the transi-
model[3,13,14, due to its simplicity and interesting proper- tion rates in each direction take the form
ties (characteristic percolation threshold, fractality of the
sample-spanning cluster, etcMore recently, diffusion has wo,. = exp( _ &1
also been studied in anisotropic bond percolation systems 1)~ Yo kT
[4,5,7. However, the interplay between temperature and dis-
order in these systems has not been studied yet. The natuthere y is the constant jump rate andis the Boltzmann
manner to include temperature effects in diffusion problemgonstant. The (% p) fraction of nonconductor components
is through thermally activated processes, i.e., associating ef? EQ. (1) now represents the existence of infinite energy
ergy barriers to the transition rates. Interesting results arbarriers.
found at low temperatures in isotropic systems, where the We sete;>e€, and define an anisotropic parameter
competing effects of temperature, energy barriers, and topok= €;/€,, and a mean energy= (e, + €;)/2. This mean en-
ogy become importaritl5—17. Static diffusion is then de- ergy was kept constant in the present work. In terms of these
scribed by an Arrhenius law with a characteristic energyparameters, we may write;=2ae/(a+1) ande,=2€/(a
which depends on the percolation threshold of the latticet 1). Then, the relevant parameters of the problem become
[15,16], and frequency-dependent diffusion becomes univerthe occupation probabilitp, the temperaturd, and the an-
sal if properly scaledl17]. The scaled units include informa- isotropic parametet. In the following, energies and tem-
tion about different parameters: temperature, characteristiperatures are measured in arbitrary uitith k=1).
percolation energy, and a characteristic frequency that marks The proposed model is studied both analytically, by using
the onset of static diffusion. an anisotropic extension to the effective medium approxima-

In this paper, we shall focus on the description of a modetion (EMA), and numerically by means of standard Monte
for anisotropic diffusion processes, both in the static andCarlo(MC) simulations. We shall briefly describe both meth-
frequency-dependent regimes. In order to emphasize the rotsls.
of temperature and its relevance for diffusion in a system The reader is referred to Rdb] for a complete descrip-
with energy disorder, we use here a two-dimensional isotrotion of anisotropic EMA. Here, we only summarize the key
pic bond percolation system with different energy-dependentesults. The EMA consists in averaging the effects of disor-
intrinsic transition rates in each direction. We define the trander by defining an effective medium with effective transition
sition rates asvyy) in the 1(2)direction and choose them rates, which depend on the Laplace variabl@hese effec-
according tol'(w,;) andQ(w,), the probability distribution tive transition rates are self-consistently determined by the
functions(PDFs9, which for this anisotropic model are given requirement that the difference between the propagator of the
by impurity and homogeneous problems should average to zero.
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Thus, in anisotropic problems, two effective transition rates, Wr———————T—— 77—

wS(u) andws(u) (one for each direction are introduced. €,=057=0.125

These effective transition rates are determined by two self- MC EMA .

consistent conditiong4,5] L5 = a=1D%) S
o0 ----- a=2 (D°) §

< Wi— Wy > =0
1+2(wi—w)[GH(u) =G (u)] T'(wy) |

< W5~ W, > 0. (3
1+2(W5—wp)[ G*(u) — GO(u)] 0(wy)

Here, G*®®) and G° are the nonperturbed anisotropic Green 05 06 07 o5 o9 1o
functions related to the probabilities of moving from the ori-
gin to one of its nearest neighbors in thé?2) direction and p
the return probability, respectively. The impure bond con-
r?eCtS two nearest neighbpr S“‘?S of the Iatticg Whose trans!:'ients on the occupation probabilip/for T=0.125. The character-
tlpn rgtes are equal t_Wl if the impure bond lies in the_ 1 istic valuep* is also indicated. Energy and temperature are given in
direction andw; if the impure bond is in the other direction. 4 itrary units with the Boltzmann constaki1.

Following the linear response thedidg], the generalized
frequency-dependent complex diffusion coefficiebtso) in - DY =+,(2p—1). Finally, for values ofr+ 1 and in the low
the anisotropic EMA context are given bP;;;)(w)  temperature limiD? andDJ were calculated by numerically
=a’wi,)(u=iw), wherea is the lattice constant. In the solving the set of Eq€4), and results are compared with MC
following, we will takea=1. simulations.

In the static case«=0), Eqgs.(3) become Let us consider the variation @9 and D$ with the oc-

cupation probabilityp, for fixed values ofT in anisotropic
2 0 €1
p Di—voexp — kT

FIG. 1. Dependence of the anisotropic static diffusion coeffi-

D(l) € conditions. The calculation was performed fer 0.5 and
arcta E“L pyoexp( B k_T> =0, ,,=0.25,, wherev is a characteristic jump frequency. Fig-
2 ure 1 showsD‘f(z) as a function op for T=0.125. Symbols
represent MC simulations and lines correspond to the EMA
numerical solution of Eqsi4). The isotropica=1 case is
included for comparison. Fon>1, we obtainDI<DJ,
(4)  which is in agreement with the fact that lower energy barriers
imply higher diffusion coefficients. Fgg=<p.=0.5, the iso-
where the transition rates are defined in B), D{=D;(w  tropic bond percolation thresholfiL3], we find that D?
=0)=wj(0) and Dg=D2(w=0)=W§(O) represent zero- =D2=0 as expected. In the low region, the two aniso-
frequency(statig diffusion coefficients in each direction.  tropic diffusion coefficients are lower than the isotropic one
Monte Carlo data are obtained by performing classicalp<p*=0.68). In this region, the conducting cluster is
random walk simulation in square lattices with 30€ites.  poorly connected and the diffusion in the low energy direc-
Normal diffusion regime(long-time limit) is reached be- tion is highly affected by the existence and height of high
tween 16 and 16 steps, and the mean square displacemengnergy barriers. A is increased, more energy barriers ap-
is averaged over 2000 and 10 000 different lattices, depengsear and the diffusion in the low energy barrier direction is
ing on data fluctuations. Static diffusion coefficients are obdess sensitive to high energy barriers. This kind of behavior is
tained via the Einstein’s reIation(sRi(z)>=2D2(2)t. As was also found for other values df, with increasing values qf*
shown earlief19], standard MC simulations fail to describe asT decreases.
particle diffusion for very low temperatures. In this limit, the  Next we turn to the behavior d])‘f and DS at low tem-
method is inefficient and other simulation methods are necperatures for fixed values pf We do not present here results
essary. Here, the standard MC method was used and simulior p=p. (or nearp.), the percolation threshold, where the
tions were performed for temperatures abdve0.05. substrate has fractal properties and diffusion becomes
We present now the results for the long-time diffusionanomaloug1,2]. In Fig. 2, we show the temperature depen-
properties. First, in the isotropic case=1, the transition dence of the static diffusion coefficients in an Arrhenius plot
rates are given by,exp(—e/kT) and, as expected, only one for p=0.8 anda=1 and 2. From the EMA curveflines),
diffusion coefficient is obtained, viz,D%,=D%=D9 the slope of the linear region is numerically calculated. For
= yoexp(—ekT)(2p—1). Second, for all values af, in the isotropic media, the EMA predicts a slope equal-t0.5=
T—oo limit (kT> €) the model again reduces to the isotropic —e. For =2, we find thath(T) and Dg(T) reach an
bond percolation problem with transition ratgg [Eq. (2)].  asymptotic Arrhenius behavior with the same activation en-
In this case, the isotropic diffusion coefficient is given by ergy €;, corresponding to the highest energy of this aniso-

t Dg+ 2)_p
arcta D_‘f Pyoexp — 7/ =0,

2 €
Zlpo— _ 2
W{DZ 7oeX[{ kT
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FIG. 2. Arrhenius plot for the anisotropic static diffusion coef- =~ - 0
. 8 104 3/ &8 ~ (©
ficients at low temperatures for=0.8. Energy and temperature are ~_ s/ S S
given in arbitrary units with the Boltzmann constant 1. Q 1.02f
100}
tropic model. This is not a striking result considering that 10 8 6 4 2 0 2
long-time diffusion at low temperatures is strongly governed log,, (@ /v)

by the highest energy barrier, as the particle spends a lot of
time trying to overcome them while performing long-  FIG. 3. Scaled frequency-dependent diffusion coefficients for
distance trajectories. The low temperature behavior of statigotropic(a) and anisotropier=2 [(b) and(c)] cases. Each curve is
diffusion coefficients depends only on the highest charactenabeled with its corresponding temperatuire arbitrary units.
istic energy value of this anisotropic model.

The frequency behavior of diffusion coefficients was stud-_, o (w— ) evolution to be given by y,exp(— e /KT) in

led by numerica_lly solving th_e set of coupled .E®" u_sing the 1 direction and by yoexp(—e,/kT) in the 2 direction.
the corresponding expressions for the anisotropic Greev\/e showed previously thaD%~exp( e, /kT), and DO
functions[5], and the temperature dependence introduced in Lo RS 2
Eq. (2). We present here results for the real part of theNeXp(_ellkT)’ thus Dy (w—¢)/Dy is expectedoto be con-
frequency-dependent complex diffusion coefficients. In FigStant at low temperatures, anD,(w— )/Dy~exp(e
3, we show the scaled valug, ,)(w)/DY,, for p=0.8, €
=0.5, and temperature values between 0.1 and 0.04. Thre
characteristic regimes can be distinguish@dthe long-time 8r "
limit for w—0, (ii) a power law behavior characteristic of | © t
intermediate frequenciesr~ w®, with s<1, and (iii) the o
high-frequency regimep—, where the diffusion coeffi- -12
cients approach to a constant value. This kind of dielectric’S I °
response has been observed before in a broad class of ion™
and electronic systems, in isotropic and anisotropic media %-16 -
[17,20,21.

In the isotropic case, we find that while decreasing the\;
temperature the scaled valuBis(w)/DY, reaches a — -20}
temperature-independent value for- [Fig. 3@]. In the
anisotropic case, Whilé)l(w)/Dg saturates folw— to a o
temperature-independent value at low temperatufég. A0 legglepy ]
3(0)], D,(w)/DY saturates to a temperature-dependent value 3 12 16 20 24 28
that follows an Arrhenius law with an activation energy -1 ]
equal toe; — €,, even at low temperaturd&ig. 3(b)]. This T~ (arb. units)

w— behavior can be interpreted from the evolution of the
particle diffusion fort—0. For =1, we find thatDs,(

T
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FIG. 4. Temperature dependence of the characteristic frequen-

_ . . . cieswey(2)- The isotropic case s, (full squared and the aniso-
— ) =PyoeXp(~€/kT). This means that the first step of the tropic @=2 casesw.; (open circley and w., (open diamongare

particle is given by the probability of finding a given bond  gpun ines are guides to the eye and are labeled by its corre-
times the intrinsic transition rate of that bond. From thisgyonging activation energy. The inset shows the determination of
considerations and using the isotropic resultBg,(T), We  the valuew, from a typical curve for the frequency-dependent dif-
find thatDgo(w— 00)/Di030= p/(2p—1)=4/3 forp=0.8, as fusion coefficient. The valuen represent the slope of the tangent
shown in Fig. 8a). In anisotropic conditions, we expect the curve through the inflection point (lggo*/v,D*/av) (see text
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—€)/KT], which account for the calculated EMA results for ~ In summary, in the present paper, we described long-time
w—o0 in Figs. 3b) and 3c). and frequency-dependent diffusion in anisotropic thermally
For intermediate frequencies a characteristic frequencwctivated processes in a two-dimensional bond percolation
w.~1ft; can be defined, related to the timg needed to |attice. The present model has different activation energies in
overcome a characteristic energy barrier. The inset of Fig. 4ach direction of the square lattice. Long-time diffusion co-
shows a typical frequency-depend@ntw) plot (as those in  efficients follow an Arrhenius law at low temperatures with
Fig. 3. The w. parameter is calculated from our anisotropic the highest energy barrier being the activation energy for
EMA data as follows. Let the inflection point be giffusion in both directions of the lattice. From the
(logygw*/v,D*/a’»), andm the slope of the tangent curve frequency-dependent diffusion coefficients, we define a char-
passing through the inflection point. Thg, ;) parameteris  4cteristic frequency.y (2. We remark that, is not mark-
given by the intersection of the slope through the inflec-  jng the onset of long-time diffusion, as in isotropic problems
tion point and the line corresponding to the long-time diffu-yith continuous PDF§17], but it is just the frequency asso-
sion coefficienD? ) (Fig. 4, inset. We include the subscript ciated to overcome the characteristic energyeath direc-
1(2) asw. may be different for each direction. In Fig. 4, we tijon. The existence of two different activation energies for
present the temperature dependence of the characteristic frg—cl(z) and only one fong(z) is a consequence of the
quencieswcy z) in an Arrhenius plot fora=1 and 2. Al strength of the percolation-type disorder, in contrast with re-
cases reach a linear behavior for low temperature values, byjts from isotropic continuous PDFs, where the characteris-
different slopes are found in each case, corresponding 10 thg; frequency and the static diffusion coefficient follow

characteristic energy in each direction. This indicates, as eXarrhenjus lawswith the sameactivation energy15—17.
pected, that different times; ()~ exd — €,(;)/kT] are needed
in each direction to overcome its characteristic energy barri- This work was partially suported by Universidad Nacio-

ers. nal del Comahue and CONICET.
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