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Anisotropic thermally activated diffusion in percolation systems
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We present a study of static and frequency-dependent diffusion with anisotropic thermally activated transi-
tion rates in a two-dimensional bond percolation system. The approach accounts for temperature effects on
diffusion coefficients in disordered anisotropic systems. Static diffusion shows an Arrhenius behavior for low
temperatures with an activation energy given by the highest energy barrier of the system. From the frequency-
dependent diffusion coefficients, we calculate a characteristic frequencyvc;1/tc , related to the timetc needed
to overcome a characteristic barrier. We find thatvc follows an Arrhenius behavior with different activation
energies in each direction.
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The study of diffusion on disordered media is an imp
tant problem, in view of its relevance in a wide variety
natural and industrial processes@1–3#. In the past years, the
anisotropic generalization of diffusion has attracted much
tention @4–9#, justified by the diversity of systems in whic
diffusion takes place. A few examples of anisotropic syste
are porous reservoir rocks@3,8,10#, epoxy-graphite disk
composites@11#, and layered semiconducting compoun
@12#.

Static ~long-time! and frequency-dependent conductivi
on isotropic disordered media has been extensively stu
with both analytical and numerical methods. One of the m
widely used models for disordered media is the percola
model@3,13,14#, due to its simplicity and interesting prope
ties ~characteristic percolation threshold, fractality of t
sample-spanning cluster, etc.!. More recently, diffusion has
also been studied in anisotropic bond percolation syst
@4,5,7#. However, the interplay between temperature and
order in these systems has not been studied yet. The na
manner to include temperature effects in diffusion proble
is through thermally activated processes, i.e., associating
ergy barriers to the transition rates. Interesting results
found at low temperatures in isotropic systems, where
competing effects of temperature, energy barriers, and to
ogy become important@15–17#. Static diffusion is then de-
scribed by an Arrhenius law with a characteristic ene
which depends on the percolation threshold of the lat
@15,16#, and frequency-dependent diffusion becomes univ
sal if properly scaled@17#. The scaled units include informa
tion about different parameters: temperature, character
percolation energy, and a characteristic frequency that m
the onset of static diffusion.

In this paper, we shall focus on the description of a mo
for anisotropic diffusion processes, both in the static a
frequency-dependent regimes. In order to emphasize the
of temperature and its relevance for diffusion in a syst
with energy disorder, we use here a two-dimensional iso
pic bond percolation system with different energy-depend
intrinsic transition rates in each direction. We define the tr
sition rates asw1(2) in the 1(2) direction and choose them
according toG(w1) andV(w2), the probability distribution
functions~PDFs!, which for this anisotropic model are give
by
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G~w1!5pd~w12w1
0!1~12p!d~w1!,

V~w2!5pd~w22w2
0!1~12p!d~w2!. ~1!

It means that the transition ratew1 takes the valuew1
0 with

occupation probabilityp and zero otherwise, and analo
gously for the 2 direction.

In order to account for the temperature dependence
diffusion coefficients, we propose intrinsic transition rat
characterized by a thermally activated process with differ
activation energies in each direction. Therefore, we define
anisotropic thermally activated process, in which the transi-
tion rates in each direction take the form

w1(2)
0 5g0expS 2

e1(2)

kT D , ~2!

whereg0 is the constant jump rate andk is the Boltzmann
constant. The (12p) fraction of nonconductor componen
in Eq. ~1! now represents the existence of infinite ener
barriers.

We set e1.e2 and define an anisotropic parametera
5e1 /e2, and a mean energye5(e11e2)/2. This mean en-
ergy was kept constant in the present work. In terms of th
parameters, we may writee152ae/(a11) ande252e/(a
11). Then, the relevant parameters of the problem beco
the occupation probabilityp, the temperatureT, and the an-
isotropic parametera. In the following, energies and tem
peratures are measured in arbitrary units~with k51).

The proposed model is studied both analytically, by us
an anisotropic extension to the effective medium approxim
tion ~EMA!, and numerically by means of standard Mon
Carlo~MC! simulations. We shall briefly describe both met
ods.

The reader is referred to Ref.@5# for a complete descrip-
tion of anisotropic EMA. Here, we only summarize the k
results. The EMA consists in averaging the effects of dis
der by defining an effective medium with effective transitio
rates, which depend on the Laplace variableu. These effec-
tive transition rates are self-consistently determined by
requirement that the difference between the propagator of
impurity and homogeneous problems should average to z
©2003 The American Physical Society01-1
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Thus, in anisotropic problems, two effective transition rat
w1

e(u) and w2
e(u) ~one for each direction!, are introduced.

These effective transition rates are determined by two s
consistent conditions@4,5#

K w1
e2w1

112~w1
e2w1!@G1~u!2G0~u!#

L
G(w1)

50,

K w2
e2w2

112~w2
e2w2!@G2~u!2G0~u!#

L
V(w2)

50. ~3!

Here,G1(2) andG0 are the nonperturbed anisotropic Gre
functions related to the probabilities of moving from the o
gin to one of its nearest neighbors in the1(2) direction and
the return probability, respectively. The impure bond co
nects two nearest neighbor sites of the lattice whose tra
tion rates are equal tow1 if the impure bond lies in the 1
direction andw2 if the impure bond is in the other direction

Following the linear response theory@18#, the generalized
frequency-dependent complex diffusion coefficientsD(v) in
the anisotropic EMA context are given byD1(2)(v)
5a2 w1(2)

e (u5 iv), where a is the lattice constant. In the
following, we will takea51.

In the static case (v50), Eqs.~3! become

2

p FD1
02g0expS 2

e1

kTD GarctanAD1
0

D2
0
1pg0expS 2

e1

kTD50,

2

p FD2
02g0expS 2

e2

kTD GarctanAD2
0

D1
0
1pg0expS 2

e2

kTD50,

~4!

where the transition rates are defined in Eq.~2!, D1
05D1(v

50)5w1
e(0) and D2

05D2(v50)5w2
e(0) represent zero

frequency~static! diffusion coefficients in each direction.
Monte Carlo data are obtained by performing classi

random walk simulation in square lattices with 3002 sites.
Normal diffusion regime~long-time limit! is reached be-
tween 103 and 106 steps, and the mean square displacem
is averaged over 2000 and 10 000 different lattices, depe
ing on data fluctuations. Static diffusion coefficients are o
tained via the Einstein’s relations,^R1(2)

2 &52D1(2)
0 t. As was

shown earlier@19#, standard MC simulations fail to describ
particle diffusion for very low temperatures. In this limit, th
method is inefficient and other simulation methods are n
essary. Here, the standard MC method was used and sim
tions were performed for temperatures aboveT50.05.

We present now the results for the long-time diffusi
properties. First, in the isotropic casea51, the transition
rates are given byg0exp(2e/kT) and, as expected, only on
diffusion coefficient is obtained, viz,Diso

0 5D1
05D2

0

5g0exp(2e/kT)(2p21). Second, for all values ofa, in the
T→` limit ( kT@e) the model again reduces to the isotrop
bond percolation problem with transition ratesg0 @Eq. ~2!#.
In this case, the isotropic diffusion coefficient is given
01210
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Diso
0 5g0(2p21). Finally, for values ofaÞ1 and in the low

temperature limitD1
0 andD2

0 were calculated by numerically
solving the set of Eqs.~4!, and results are compared with M
simulations.

Let us consider the variation ofD1
0 and D2

0 with the oc-
cupation probabilityp, for fixed values ofT in anisotropic
conditions. The calculation was performed fore50.5 and
g050.25n, wheren is a characteristic jump frequency. Fig
ure 1 showsD1(2)

0 as a function ofp for T50.125. Symbols
represent MC simulations and lines correspond to the E
numerical solution of Eqs.~4!. The isotropica51 case is
included for comparison. Fora.1, we obtainD1

0,D2
0,

which is in agreement with the fact that lower energy barri
imply higher diffusion coefficients. Forp<pc50.5, the iso-
tropic bond percolation threshold@13#, we find that D1

0

5D2
050 as expected. In the lowp region, the two aniso-

tropic diffusion coefficients are lower than the isotropic o
(p<p* .0.68). In this region, the conducting cluster
poorly connected and the diffusion in the low energy dire
tion is highly affected by the existence and height of hi
energy barriers. Asp is increased, more energy barriers a
pear and the diffusion in the low energy barrier direction
less sensitive to high energy barriers. This kind of behavio
also found for other values ofT, with increasing values ofp*
asT decreases.

Next we turn to the behavior ofD1
0 and D2

0 at low tem-
peratures for fixed values ofp. We do not present here resul
for p5pc ~or nearpc), the percolation threshold, where th
substrate has fractal properties and diffusion becom
anomalous@1,2#. In Fig. 2, we show the temperature depe
dence of the static diffusion coefficients in an Arrhenius p
for p50.8 anda51 and 2. From the EMA curves~lines!,
the slope of the linear region is numerically calculated. F
isotropic media, the EMA predicts a slope equal to20.55
2e. For a52, we find thatD1

0(T) and D2
0(T) reach an

asymptotic Arrhenius behavior with the same activation
ergy e1, corresponding to the highest energy of this anis

FIG. 1. Dependence of the anisotropic static diffusion coe
cients on the occupation probabilityp for T50.125. The character
istic valuep* is also indicated. Energy and temperature are given
arbitrary units with the Boltzmann constantk51.
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tropic model. This is not a striking result considering th
long-time diffusion at low temperatures is strongly govern
by the highest energy barrier, as the particle spends a lo
time trying to overcome them while performing long
distance trajectories. The low temperature behavior of st
diffusion coefficients depends only on the highest charac
istic energy value of this anisotropic model.

The frequency behavior of diffusion coefficients was stu
ied by numerically solving the set of coupled Eqs.~3!, using
the corresponding expressions for the anisotropic Gr
functions@5#, and the temperature dependence introduce
Eq. ~2!. We present here results for the real part of t
frequency-dependent complex diffusion coefficients. In F
3, we show the scaled valuesD1(2)(v)/D1(2)

0 for p50.8, e
50.5, and temperature values between 0.1 and 0.04. T
characteristic regimes can be distinguished:~i! the long-time
limit for v→0, ~ii ! a power law behavior characteristic o
intermediate frequencies,s;vs, with s<1, and ~iii ! the
high-frequency regime,v→`, where the diffusion coeffi-
cients approach to a constant value. This kind of dielec
response has been observed before in a broad class of
and electronic systems, in isotropic and anisotropic me
@17,20,21#.

In the isotropic case, we find that while decreasing
temperature the scaled valueDiso(v)/Diso

0 reaches a
temperature-independent value forv→` @Fig. 3~a!#. In the
anisotropic case, whileD1(v)/D1

0 saturates forv→` to a
temperature-independent value at low temperatures@Fig.
3~c!#, D2(v)/D2

0 saturates to a temperature-dependent va
that follows an Arrhenius law with an activation energ
equal toe12e2, even at low temperatures@Fig. 3~b!#. This
v→` behavior can be interpreted from the evolution of t
particle diffusion fort→0. For a51, we find thatDiso(v
→`)5pg0exp(2e/kT). This means that the first step of th
particle is given by the probabilityp of finding a given bond
times the intrinsic transition rate of that bond. From th
considerations and using the isotropic result forDiso

0 (T), we
find thatDiso(v→`)/Diso

0 5p/(2p21)54/3 for p50.8, as
shown in Fig. 3~a!. In anisotropic conditions, we expect th

FIG. 2. Arrhenius plot for the anisotropic static diffusion coe
ficients at low temperatures forp50.8. Energy and temperature a
given in arbitrary units with the Boltzmann constantk51.
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t→0 (v→`) evolution to be given bypg0exp(2e1 /kT) in
the 1 direction and bypg0exp(2e2 /kT) in the 2 direction.
We showed previously thatD1

0;exp(2e1 /kT), and D2
0

;exp(2e1 /kT), thusD1(v→`)/D1
0 is expected to be con

stant at low temperatures, andD2(v→`)/D2
0;exp@(e1

FIG. 4. Temperature dependence of the characteristic freq
ciesvc1(2) . The isotropic casevc,iso ~full squared! and the aniso-
tropic a52 casesvc1 ~open circles! and vc2 ~open diamond! are
shown. Lines are guides to the eye and are labeled by its co
sponding activation energy. The inset shows the determinatio
the valuevc from a typical curve for the frequency-dependent d
fusion coefficient. The valuem represent the slope of the tange
curve through the inflection point (log10v* /n,D* /a2n) ~see text!.

FIG. 3. Scaled frequency-dependent diffusion coefficients
isotropic~a! and anisotropica52 @~b! and~c!# cases. Each curve is
labeled with its corresponding temperature~in arbitrary units!.
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2e2)/kT#, which account for the calculated EMA results f
v→` in Figs. 3~b! and 3~c!.

For intermediate frequencies a characteristic freque
vc;1/tc can be defined, related to the timetc needed to
overcome a characteristic energy barrier. The inset of Fi
shows a typical frequency-dependentD(v) plot ~as those in
Fig. 3!. Thevc parameter is calculated from our anisotrop
EMA data as follows. Let the inflection point b
(log10v* /n,D* /a2n), andm the slope of the tangent curv
passing through the inflection point. Thevc1(2) parameter is
given by the intersection of the slopem through the inflec-
tion point and the line corresponding to the long-time diff
sion coefficientD1(2)

0 ~Fig. 4, inset!. We include the subscrip
1(2) asvc may be different for each direction. In Fig. 4, w
present the temperature dependence of the characteristic
quenciesvc1(2) in an Arrhenius plot fora51 and 2. All
cases reach a linear behavior for low temperature values
different slopes are found in each case, corresponding to
characteristic energy in each direction. This indicates, as
pected, that different timestc1(2);exp@2e1(2)/kT# are needed
in each direction to overcome its characteristic energy ba
ers.
-
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In summary, in the present paper, we described long-t
and frequency-dependent diffusion in anisotropic therma
activated processes in a two-dimensional bond percola
lattice. The present model has different activation energie
each direction of the square lattice. Long-time diffusion c
efficients follow an Arrhenius law at low temperatures wi
the highest energy barrier being the activation energy
diffusion in both directions of the lattice. From th
frequency-dependent diffusion coefficients, we define a ch
acteristic frequencyvc1(2) . We remark thatvc is not mark-
ing the onset of long-time diffusion, as in isotropic problem
with continuous PDFs@17#, but it is just the frequency asso
ciated to overcome the characteristic energy ofeachdirec-
tion. The existence of two different activation energies
vc1(2) and only one forD1(2)

0 is a consequence of th
strength of the percolation-type disorder, in contrast with
sults from isotropic continuous PDFs, where the characte
tic frequency and the static diffusion coefficient follo
Arrhenius lawswith the sameactivation energy@15–17#.
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